Phosphorylation of Serine 114 on Atg32 mediates mitophagy
نویسندگان
چکیده
منابع مشابه
Phosphorylation of Serine 114 on Atg32 mediates mitophagy
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular st...
متن کاملCasein kinase 2 is essential for mitophagy.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase-deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32-Atg11 interaction and mitophagy....
متن کاملBcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
Damaged mitochondria are removed by mitophagy. Although Atg32 is essential for mitophagy in yeast, no Atg32 homologue has been identified in mammalian cells. Here, we show that Bcl-2-like protein 13 (Bcl2-L-13) induces mitochondrial fragmentation and mitophagy in mammalian cells. First, we hypothesized that unidentified mammalian mitophagy receptors would share molecular features of Atg32. By s...
متن کاملPhospholipid methylation controls Atg32-mediated mitophagy and Atg8 recycling.
Degradation of mitochondria via selective autophagy, termed mitophagy, contributes to mitochondrial quality and quantity control whose defects have been implicated in oxidative phosphorylation deficiency, aberrant cell differentiation, and neurodegeneration. How mitophagy is regulated in response to cellular physiology remains obscure. Here, we show that mitophagy in yeast is linked to the phos...
متن کاملTaxol mediates serine phosphorylation of the 66-kDa Shc isoform.
In the human lung carcinoma cell line A549, Taxol (20 nM) causes a decreased electrophoretic mobility of the 66-kDa Shc isoform (p66shc), beginning 4 h after drug exposure, and reaching a maximum at 9-18 h. No shift was observed for the 52- and 46-kDa isoforms of Shc. The electrophoretic mobility shift of p66shc caused by Taxol is not the result of tyrosine phosphorylation, and there is no indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology of the Cell
سال: 2011
ISSN: 1059-1524,1939-4586
DOI: 10.1091/mbc.e11-02-0145